如图3点A(1,2)在双曲线y=k x上连接并延长

来源:学生作业帮助网 编辑:作业帮 时间:2022/01/19 21:46:16
如图,在平面直角坐标系中,已知直线y=-2x+5与y轴交于点A,交双曲线于点D(2,1),将直线AD绕点A顺时针旋转90

(1)设反比例函数为y=k/x,图象过点(2,1).∴1=k/2,k=2.故反比例函数解析式为y=2/x;直线y=-2x+5与Y轴交于A(0,5),即OA=5;作DM垂直Y轴于M,因点M为(2,1).

如图已知直线y等于kx(k大于0)与双曲线y等于x分之8在第一象限交于a点,且a点的横坐标为4,点b在双曲线上,点b的纵

因为a,b都在y=8/x上,求得a(4,2),b(2,4).因为a为交点,故a在y=kx上,故k=0.5.oa解析式为y=x/2.容易看出opb直角三角形,其中角pob不会是直角,但其他两个角都可能是

1、如图,直线y=kx+2k (k≠0)与x轴交于点B,与双曲线y=(m+5)x2m+1交于点A、C,其中点A在第一象限

解析式:y=4/x点B坐标为(-2,0)点P坐标为(-根号8,0)(4,0)(0,4)(0,-根号8)点A坐标(2,2)不知对不对,还请你仔细考虑一下

(2013•湖州二模)如图,在平面直角坐标系中,直线y=kx和双曲线y=k′x在第一象限相交于点A(1,2),点B在y轴

(1)把A(1,2)代入y=kx和y=k′x,得K=2,k´=2∴直线y=kx的函数关系式是y=2x双曲线y=k′x的函数关系式是y=2x,(2)∵AB=1,OB=2,OP=t∴PC=t2,PD=2t

高中数学题求解:如图,已知点A(-2,0),B(2,0),点C在双曲线x²-y²=1上运动,求以AB

设P(x,y),C(m,n)由于ABCP是平行四边形所以AB//PC,AP//BC则kAB=kPC=0→y=nkAP=kBC→y/(x+2)=n/(m-2)上面两个方程解出n=ym=x+4将m,n的带

已知:如图,直线y=kx+b与双曲线y= 3x在第一象限内相交于点M(1,a)和N(3,b),与x轴和y轴分别相交与点A

因为M,N是双曲线y=3/x上的点,所以M(1,3),N(3,1),由于直线AB经过M,N,由待定系数法解得:y=-x+4,y=-x+4与x轴交于A(4,0),与y轴交于B(0,4),所以AB=4根2

如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y=4x在第一象限内交于点C(1,

(1)把C(1,m)代入y=4x中得m=41,解得m=4,∴C点坐标为(1,4),把C(1,4)代入y=2x+n得4=2×1+n,解得n=2;(2)∵对于y=2x+2,令x=3,则y=2×3+2=8,

如图,点A是双曲线y=k/x与直线y=-x-(k+1)在第二象限内的交点,AB⊥x轴于B,且S△ABO=3/2

设交点是a(x0,y0),因它在第2象限,x00.那么三角形abo面积=-x0*y0/2=3/2得x0*y0=-3.因a点在双曲线y=k/x上,即y0=k/x0,从而,k=x0*y0=-3.(1)两个

如图,已知双曲线x^2/a^2-y^2/b^2=1(a>b>0),其右准线交x轴于点A,双曲线虚轴的下端点为B,过双曲线

其实不难:(1)B(0,-b)A(a2/c,0);P(c,b2/a);D(c,c/2+b2/2a),A、B、D共线,得a=2b,可算得e根号下5/2(2)C(0,4)

如图,直线Y=KX+2K(K不等于0)与X轴交于点B,与双曲线y=(m+5)x^(2m+1)交于点A.C,其中点A在第一

1、双曲线的解析式是形如:y=k/x(k≠0)的函数则必有2m+1=-1,m=-1.故解析式为y=4/x2、B在x轴上,在直线y=kx+2k中,令y=0,得出x=-2.则B(-2,0)3、A在直线上,

如图,已知双曲线 y=kx与直线 y=1/4x相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线 y=k

(1)将x=-8代入直线y=1/4x,得y=-2.∴点B坐标(-8,-2)将点B坐标(-8,-2)代入y=k/x得:k=xy=16.∵A点是B点关于原点的对称点,∴A点坐标为(8,2)(2)∵B是CD

如图,抛物线y=ax^2+bx(a>0)与双曲线y=k/x相交于点A,B,已知点A坐标为(1,-4)点B在第三象限内且三

抱歉!原题不完整(无图),无法直接解答.请审核原题,追问时补充完整,

如图,已知点A在双曲线y=1/x上,点B在双曲线y=3/x上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形

连接AB并延长交Y轴于E,A在Y=1/X上,∴S矩形OEAD=1,B在Y=3/X上,∴S矩形OEBC=3,∴S矩形ABCD=3-1=2.

如图,在直角坐标系中,点A是x轴正半轴上的一点,点B是双曲线y=3/x(x>0)上的一个动点,

逐渐减小.三角形0AB的面积=0.5*OA*B点到x轴的距离(即B点纵坐标的数值),因为OA长度不变,当点B的横坐标逐渐增大时,B点纵坐标无限接近零,所以选C.

如图,在平面直角坐标系中,双曲线y=kx过点A(-4,1),过点P是与点A不重合的双曲线上任一动点,过点A和P分别向两坐

(1)将点A坐标(-4,1)代入y=kx,得k=-4.∴双曲线解析式为y=-4x.∴S矩形ABCO=S矩形PDOE=|k|=4.又∵S△ADC=12S矩形ABCO,S△PDC=12S矩形PDOE,∴S

(2013•滨湖区二模)如图,已知点A是双曲线y=3x

设点B所在反比例函数的解析式为y=kx(k≠0),分别过点AB作AD⊥x轴于点D,BE⊥x轴于点E,∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,∴∠OAD=∠BOE,同理可得∠AOD=∠

如图1,已知双曲线y= k (k>0)与直线y=k′x交于A,B两 x 点,点A在第一象限.如图2,过原 点O作另一条直

不用图2了我会做.分析:数与形相结和,理解正比例函数与反比例函数的性质,并对函数的性质灵活运用,同时也训练了平形四边形和矩行的相关性质.点A与点B关于原点对称,所以B点坐标为(-4,-2),在第三象限

如图,已知双曲线y=(k-3)/x与过原点的直线相交于A,B两点,第一象限内的M(点M在A的一方)是双曲线y=(k-3)

请点击放大图片观看再问:相似没学过,请用初二知识解题,谢谢

如图1所示,在平面直角坐标系中,点A(-1,0),点B(3,0),点C在双曲线y=2/x上,且CA=CB

(1)因为CA=CB,所以点C在线段AB的垂直平分线即直线x=1上将x=1代入y=2/x,得y=2所以点C坐标是(1,2)(2)由A,B,M坐标知OM=根号3倍OA,OB=根号3倍OM所以角AMO=3